
J. Noorishad, C. F. Tsang, and P. A. Witherspoon

Earth Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley

The fundamentals of the theory of consolidation and thermoelasticity are recast into the formulation of a phenomenon called thermohydroelasticity. Subsequently, a variational principle and Galerkin formulation are combined with the finite element method to develop a new technique to investigate coupled thermal-hydraulic-mechanical behavior of liquid-saturated, fractured porous rocks. A code-to-code verification of the method is performed. Finally, the environment of a heater emplaced in hard rock is simulated. The effects of the coupled thermal stresses in the fractured rock are evident from the dramatic reduction of permeability due to the deformation of the fractures. These results can improve the understanding of observations and displacement measurements made in the in situ experiments at the Stripa mine in Sweden.

INTRODUCTION

The presence of heat in a liquid-saturated geologic medium brings about a chain of events that is caused by what are referred to as coupled thermal-hydraulic-mechanical phenomena. The interdependence of each of these three phenomena leads to a coupled behavior that is very complex. However, recent progress in coupled analyses among pairs of these three phenomena provides a basis for treating all three phenomena in a fully coupled manner. In this paper, we first review the developments for coupled hydromechanical, hydrothermal, and thermomechanical processes and then present the fully coupled problem.

Hydraulic behavior of saturated porous media has been studied for a long time, and excellent reviews can be found in recent publications [Weeks, 1977; Freeze and Cherry, 1979]. In the usual treatment of fluid flow in porous media, deformation of the medium is considered by introducing a coefficient of specific storage [Theis, 1938]. This approach, although by no means precise, is adequate to represent most fluid flow problems. However, the well-known theory of consolidation, introduced by Terzaghi [1925], which is mainly used for settlement analysis, was the first rigorous means of analyzing the effects of deformability on flow of fluid in a medium. Terzaghi introduced the concept of effective stress and accounted for the coupling of fluid flow and deformation of the solids. Biot [1941] introduced a more general theory of consolidation that makes possible a more realistic treatment of the hydromechanical behavior of saturated porous rocks. The early work of Biot [1941] appeared to be physically motivated but was later supplemented by a thermodynamic base [Biot, 1956].

The theories of mixtures [e.g., Green and Naghdi, 1965; Crochet and Naghdi, 1966; Affantis, 1977] have a sound thermodynamic base and a general associated constitutive theory. They provide a basis for developing, as a special case, a theory for flow of fluids through porous elastic solids that is equivalent to Biot's result.

For a long time, solution techniques for hydromechanical problems lagged behind theory and were restricted to simple geometries. With the advent of computers, numerical solution techniques were developed for coupled one-dimensional equations of consolidation and multidimensional equations of fluid flow. This provided an approximate means of analyzing general fluid flow problems in deformable porous media [Helm, 1974; Narasimhan and Witherspoon, 1977]. In an attempt to develop a method for the solution of general consolidation problems, Sandhu and Wilson [1969] applied the variational finite element method to the problem of fluid flow through saturated, porous elastic solids. This method was extended by Ghaboussi and Wilson [1973], who considered the effects of fluid compressibility.

Recently, Safai and Pinder [1979] developed a Galerkin finite element method of analyzing fluid flow through deformable porous media and made an attempt to consider the entire saturated-unsaturated flow regime. The proper constitutive stress-strain relationships for the extension of Biot's [1941] theory to the entire flow regime was later provided by Noorishad et al. [1982b].

Unlike soils (porous media), which exhibit the dramatic settlement behavior that motivated the development of consolidation theories, fractures and the effects of their deformation went unnoticed until recently. Davis and Moore [1965] presented one of the first direct measurements of fracture deformation (of the order of microns) caused by earth tides. Snow [1968] reported strains of 10^{-6} to 10^{-8} at a distance of about 300 ft (91.4 m) from a water well in metamorphic rocks subjected to 30 ft (9.14 m) of drawdown. More indirect evidence of fracture deformation has accumulated from (1) the difference between pumping into and pumping out of a well [Evans, 1966], (2) the nonlinear relationship between fluid pressure and flow rate during injection tests [Snow, 1965; Louis and Maini, 1970], and (3) the pressure dependence of transmissivity in the Precambrian reservoir beneath the Denver Basin [Van Poollen, 1969]. For some time, hydraulic and hydromechanical analyses of fractures were achieved using an equivalent porous medium approach. Noorishad [1971] conducted theoretical and numerical studies of fluid flow in a rock mass, taking into account the deformable nature of fractures in a discrete manner. This work was based on earlier studies of discrete fracture behavior from a load-deformation point of view by Goodman et al. [1968] and a fluid flow point of view by Wilson and Witherspoon [1970]. Further laboratory and field tests by Gale [1975] provided strong evidence of nonlinear fracture deformability induced by fluid pressure changes and also verified the capability of earlier numerical solution techniques [Noorishad, 1971].
A deterministic solution for transient flow of fluids in deformable fractured porous rocks was not achieved until recently. Ayatollahi [1978] has used an enumerative approach that is based upon a generalization of Biot's [1941] constitutive stress-strain law and incorporates a Gurtin [1964] type variational principle. An extension of this work by Noorishad et al. [1982a] provides a general two-dimensional finite element solution technique for the study of the deformation, stress distribution, fluid storage, and hydraulic properties of a fractured porous medium under the influence of fluid flow and structural boundary conditions. Reviews of other recent efforts to develop hydromechanical models are also available [Baca, 1980; Tsang, 1980].

Coupled phenomena of fluid flow and heat flow, usually known as hydrothermal flow, have been the subject of detailed studies. Recent accounts of the state of the art can be found in the works by Pinder [1979] and Wang et al. [1980].

Study of thermal effects on linear and nonlinear elastic materials, known as thermoelasticity, is a discipline that has been thoroughly covered in physics and engineering and need not be considered here. As far as rock mechanics usage is concerned, thermoelasticity lies mostly within the confines of continuum applications. An account of the status and needs of the thermomechanical modeling techniques for continuous and discontinuous media is given by Hocking [1979]. More recent reports [Baca, 1980; Tsang, 1980] indicate that some models being developed either have provisions for incorporating fractures in them or actually have the capability for deterministically modeling discontinuous media.

The studies cited above have each focused on only two aspects of a much broader question that needs investigation. This is the fully coupled problem of how to analyze the behavior of a fractured rock mass that is subject to the effects of thermal, hydraulic, and mechanical perturbations. We shall refer to the combined effects as thermohydroelasticity. From reviews by Atherton et al. [1976], Baca [1980], Miller et al. [1980], and Wang et al. [1980] it appears that a number of workers [e.g., Pritchett et al., 1975; Bear and Corapcioglu, 1981] have been and are considering the fully coupled problem of thermohydroelasticity, but to our knowledge very little on this subject has appeared in the literature. One case of interest has recently been reported by Aboustit et al. [1982]. They have developed a variational formulation for the coupled thermal-hydraulic-mechanical behavior of elastic porous media. However, the role of convection in the transfer of energy had to be disregarded, and the contributions of the compressibility and thermal expansion of the fluid were not considered. Only an indirect coupling between the energy and fluid flow equations resulted.

This work is the result of our effort to treat the fully coupled problem of thermohydroelasticity and is a natural outgrowth of earlier work in this laboratory. We first present the fundamental equations and then define the initial and boundary conditions. Because of the complexity of the problem, we have not attempted an analytical solution. Therefore this paper is concerned with a numerical solution and the development of a finite element code, ROCMAS, that is based on a mixed variational and Galerkin approach. A partial verification of the code was reported earlier [Witherspoon et al., 1981b], and a code-to-code comparison utilizing the results of Aboustit et al. [1982] will be presented here. Also discussed are the results of an application, the simulation of the environment of an emplaced heater. A second paper will be prepared when comprehensive application studies of this work become available.
\[q = -\frac{k_f}{\eta_l} \cdot (\nabla P + \rho g \nabla z) \]

where
\[\eta_l \quad \text{liquid dynamic viscosity;} \]
\[k_f \quad \text{local intrinsic permeability tensor;} \]
\[\nabla z = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \]
\[P \quad \text{liquid pressure}. \]

Substitution of (11) in (10) yields the following equation:
\[\phi \frac{D\rho_l}{Dt} + \rho_l \frac{\partial e}{\partial t} = \nabla \cdot \left(\frac{\rho_l k_f}{\eta_l} \cdot (\nabla P + \rho g \nabla z) \right) \]

Further development of (12) requires the fluid state equation relating fluid density to temperature and pressure. Assuming small changes of density, the truncated Taylor series expansion of \(\rho_l \) about the reference density \(\rho_0 \) provides the required relationship:
\[\rho_l = \rho_0 + \left(\frac{\partial \rho_l}{\partial T} \right)_0 (T - T_0) + \left(\frac{\partial \rho_l}{\partial P} \right)_0 (P - P_0) \]

The coefficients in the above equation can be defined as
\[\beta_T = \left(\frac{\partial \rho_l}{\partial T} \right)_0 \quad \beta_P = \left(\frac{\partial \rho_l}{\partial P} \right)_0 \]
where \(\beta_T \) is the coefficient of thermal volume expansion for the liquid and \(\beta_P \) is the compressibility coefficient of the liquid. Substituting \(\beta_T \) and \(\beta_P \) in (13) and taking the comoving time derivative of the fluid density, with respect to solid velocity, gives
\[\frac{D\rho_l}{Dt} = \rho_0 \beta_T \frac{DT}{Dt} + \rho_0 \beta_P \frac{DP}{Dt} \]

Using (14) in (12) and neglecting the \(V_s \cdot \nabla P \) and \(V_s \cdot \nabla T \) terms yields
\[\frac{\partial \xi}{\partial t} = \frac{e}{\rho_0} \frac{\partial \rho_l}{\partial t} = \nabla \cdot \left[\frac{\rho_l k_f}{\rho_0 \eta_l} \cdot (\nabla P + \rho g \nabla z) \right] \]

where
\[\xi = \frac{\rho_i}{\rho_0} \delta_{ij} e_{ij} + \frac{1}{M} P + \frac{1}{M_T} T \]

and
\[M = 1/\phi \beta_P \quad M_T = 1/\phi \beta_T \]

Equation (15) is the final form of the combined mass and momentum balance law for the moving fluid in thermohydroelasticity. In isothermal conditions, (16) takes the familiar form of Biot’s equation, under the assumption of solid grain incompressibility. The same assumption is used in this study in the derivation of (7). Considering the contribution of the second-order term \(e/\rho_0 k_f \partial \rho_l / \partial t \) as negligible, the variable \(\xi \) can be equally termed as the equivalent fluid volume strain in nonisothermal cases. It may, therefore, be generalized for consideration of solid grain compressibility by introduction of Biot’s coupling coefficient \(\alpha \) in the following manner:
\[\xi = \frac{\rho_i}{\rho_0} \alpha \delta_{ij} e_{ij} + \frac{1}{M} P + \frac{1}{M_T} T \]

Equation (17) provides the first constitutive relationship for the analysis of thermohydroelastic phenomena.

The next important constitutive equation that is complementary to (17) relates the total bulk stress components \(\tau_{ij} \) to strain components \(e_{ij} \) by fluid pressure \(P \), and the thermal stress \(\tau_{ij} \). Biot [1941, 1956] provides such a relationship in the absence of thermal stresses. It is known that any rise or fall of temperature acts in the form of initial strains [Zienkiewicz, 1976] that are independent of other mechanical stresses. Therefore, Biot’s [1941] stress-strain law for the mechanically isotropic case needs to be modified in the following way:
\[\tau_{ij} = 2\mu e_{ij} - \tau_{ij} + 3\alpha \delta_{ij} P \]

Assuming a thermal expansivity tensor \(\gamma_{ij} \), the above equation can be written as
\[\tau_{ij} = 2\mu e_{ij} + \lambda \delta_{ij} e_{kk} - \tau_{ij} + 3\alpha \delta_{ij} P \]

where \(\lambda = 1/2(U_{11x} + U_{1,1}, \lambda \) and \(\mu \) are Lamé’s constants, and
\[\tau_{ij} = (2\mu e_{ij} + \lambda \delta_{ij} e_{kk})T \]

For thermal isotropy conditions, (19) can be written as
\[\tau_{ij} = 2\mu e_{ij} + \lambda \delta_{ij} e_{kk} - \beta_{ij} T + 3\alpha \delta_{ij} P \]

where \(\beta = (2\mu + 3\alpha)\gamma \) and \(\gamma \) is the isotropic linear solid thermal expansion coefficient.

The dependent variables of the above equations (i.e., \(e, \rho, \) and \(T \)) are all regarded as being incremental in value and represent deviation from the zero (stress-free) state. Also in the above development, thermal contact equilibrium between fluid and solid is assumed. Equations (17) and (21) provide the constitutive equations relating stresses to strains in thermohydroelasticity phenomena.

Governing equations of the phenomena are (1) the static equilibrium law given as
\[\frac{\partial^2 \tau_{ij}}{\partial x_j} + \rho_s f_i = 0 \]

where \(f_i \) is the component of the body force, which is gravity in this case, (2) the law of fluid flow in porous media, given in the form of (15), and (3) the well-known law of conservation of energy, expressed in the form [Mercer, 1973]
\[(\rho C)_M \frac{\partial T}{\partial t} + \rho C_v u \frac{k_f}{\eta_l} \cdot (\nabla P + \rho g \nabla z) \cdot \nabla T = \nabla \cdot (K_M \cdot \nabla T) \]

where \((\rho C)_M \) and \(K_M \) are the specific heat capacity and thermal conductivity of the fluid-filled media, defined as
\[(\rho C)_M = \rho P C_v + (1 - \phi) \rho_s C_v \]
\[K_M = \phi K_f + (1 - \phi) K_s \]
in which \(C_v \) and \(C_v \) are the fluid and solid specific heat constants at constant volume and \(K_f \) and \(K_s \) are the total fluid thermal dispersion tensor and the solid thermal diffusion tensor. In the development of (23) the reverse effect of temperature distribution caused by the elastic deformation of solid and dilatation of the fluid is neglected. Inclusion of the solid deformation energy, the most important of the two effects, brings about the thermoelastic coupling effect. Addition of this thermoelastic dissipation rate term, given by Biot [1956] as \([T_{ij} \delta_{ij} / \partial t] \alpha_{ij} e_{ij}\), to (23) completes the energy equation:
\[
\frac{(\rho_0)M}{\partial t} T + T_0 \frac{\partial}{\partial t} (\delta_{ij} e_{ij}) + \rho_0 C_{\text{el}} \frac{\partial}{\partial t} (\nabla P + \rho_0 g \nabla z) \cdot \nabla T = \nabla \cdot \mathbf{K}_M \cdot \nabla T \quad (24)
\]

where \(T_0 \) designates the absolute temperature in the stress-free state.

Besides neglecting the energy associated with fluid dilatation, thermal contact equilibrium between fluid and solid and absence of fluid shearing stresses in the macroscopic sense are assumed. An energy source term in (24) and a mass source term in (15) are neglected for the sake of brevity. Both source terms can be added to the fluid flow and heat equation with no difficulty if so desired.

As may be seen, the fundamental laws governing the static equilibrium, flow of fluid, and flow of heat are coupled through the dependent variables of solid displacement vector, fluid pressure, and the macroscopic medium temperature. These governing laws, expressed in (15), (22), and (24), in conjunction with constitutive equations (17), (21) and the equation of state, (13), provide the complete mathematical formulation of the linear thermohydroelastic phenomena in saturated porous media. The foregoing equations, along with the following general initial and boundary conditions, define the mixed initial boundary value problem of thermohydroelasticity for which a numerical solution approach is suggested.

INITIAL AND BOUNDARY CONDITIONS

The general boundary and initial conditions for the saturated porous elastic medium are

\[
\begin{align*}
U(x, t) &= \bar{U}(x, t) \quad \text{on } A_1 \times [0, \infty), \\
\tau(x, t) \cdot n(x) &= \bar{G}(x, t) \quad \text{on } A_2 \times [0, \infty), \\
P(x, t) &= \bar{P}(x, t) \quad \text{on } A_1 \times [0, \infty), \\
\mathbf{K}_M \cdot \nabla \cdot n(x) &= \bar{G}_M(x, t) \quad \text{on } A_2 \times [0, \infty), \\
U(x, 0) &= 0 \quad \text{on } V, \\
\tau(x, 0) &= 0 \quad \text{on } V, \\
P(x, 0) &= 0 \quad \text{on } V, \\
T(x, 0) &= 0 \quad \text{on } V.
\end{align*}
\]

\(A, B, C \) represent parts of the boundary for stress-displacement, pressure-fluid flow, and temperature-heat flux considerations. The quantity \(V \) represents the volume under consideration. As mentioned earlier, the dependent variables \(U, P, \) and \(T \) represent incremental deviations from strain-free state assumed by the above choice of initial conditions. Consideration of a different set of values for the initial conditions will necessitate replacement of \(U, P, \) and \(T \) by \((U - U_0), (P - P_0), \) and \((T - T_0) \) in the developed equations. Moreover, \(\tau \) has to be replaced by \((\tau - \tau_0) \). In application, however, the displacement initial condition is seldom included, but this practice does not affect the results of the analysis.

SOLUTION APPROACH

The degree of complexity of the thermohydroelasticity equations leaves little possibility for developing analytic solutions for even simple initial and boundary value problems. However, numerical solutions to the most general initial and boundary value problems can rather easily be found. Various numerical schemes, such as finite element and finite difference methods, can be utilized. In this work the finite element technique is used. A mixed variational and Galerkin finite element method forms the basis of this approach.

Variational Formulation

The variational method is used to formulate the hydroelastic part of the thermohydroelastic phenomena. Let \(R = [U, P] \) be an admissible state in \(J \) defined in \(V \times [0, \infty) \), and let the functions \(U \) and \(P \) possess the appropriate continuity and differentiability conditions. \(J \) is the set of all admissible states, \(V \) is the region of space occupied by the fluid-porous solid mixture. A function \(\Omega(R) \) over \(J \) for each time \(t \in [0, \infty) \) is defined as

\[
\Omega(R) = \int_V \left(\beta \delta_{ij} e_{ij} - 2 \rho_0 g \delta_{ij} - 2 \rho g \nabla \cdot \nabla \right) \cdot dV - \int_{\partial V} \delta_{ij} \cdot \nabla \cdot dS (26)
\]

where the asterisk denotes convolution product and \(C_{ijkl} \) represents the elasticity tensor. It can be shown that

\[
\delta \Omega(R) = \frac{d}{dv} \Omega(R + v \delta R) \bigg|_{v=0} = 0 \quad \text{for every } R \in J
\]

if and only if \(R \) is a solution state of the mixed boundary value problem. The presence of temperature terms in the variational principle is also justified physically by the fact that thermal effects act in the form of initial strains, as explained earlier.

Galerkin Formulation

A Galerkin method is used to obtain a numerical formulation for the energy equation. Choosing approximating functions of the form \(\Phi = \Phi_i \), where \(\Phi_i \) represents the \(i \)th basis functions and \(T_i \) denotes the discrete temperature values to be determined, the Galerkin procedure, modified by the application of Green's second theorem, requires the following:

\[
\int_V \left\{ (\rho C)_{M} \frac{\partial^2 T}{\partial t^2} + \beta T_0 \Phi_i \frac{\partial}{\partial t} (\delta_{ij} e_{ij}) + \rho_0 C_{\text{el}} \Phi_i \cdot \nabla T + \nabla \Phi_i \cdot \mathbf{K}_M \cdot \nabla T \right\} dV - \int_{\partial V} \Phi_i \bar{Q}_s \cdot dS = 0 \quad (27)
\]

where the volume integral in (27) represents a global restatement of (24) and the surface integral indicates the global satisfaction of the heat flux boundary condition [Hsu and Nickell, 1974].

Finite Element Discretization

The field variables, the displacement vector \(U \), the pressure \(P \), and the temperature \(T \), are interpolated as follows:

\[
\begin{align*}
U &= \Phi_i \cdot T U \\
U &= \Phi^T \cdot P \\
T &= \Phi^T \cdot T.
\end{align*}
\]
where T_i stands for matrix transpose operation and the Φ_i are piecewise continuous polynomial functions that are used in conjunction with the mixed isoparametric quadrilateral elements. Proper substitution of (28) and related derivatives of Φ and Φ represented by Φ and Φ in the Galerkin integral and the functional, after taking variations with respect to U and P for the functional, yields the following matrix finite element formulation:

$$KU + C_{vv}P + C_{vt}T = F \quad (29)$$

$$C_{vp}U + (E_f + 1 \times H_f)P + C_{Pr}T = -1 \times Q_i \quad (30)$$

$$C_{tv}U + [E_h + 1 \times (H_{h_f} + H_0)]T = -1 \times Q_h \quad (31)$$

where * represents time integration. Matrix coefficients of above formulation are presented in the appendix.

Solution Scheme

Two different schemes of time integration are used to integrate the matrix equations (29), (30), and (31). A predictor-corrector scheme [Taylor, 1974] is used for the integration of the first two implicitly coupled equations [Ayatollahi, 1978]. For the energy equation the Crank-Nicolson step-by-step procedure is used, where the solution of each step is sought in the middle of the interval. The solution technique for both symmetric and nonsymmetric matrices, finalized in the above procedures, is the LU decomposition Gaussian method.

The coupling of (31) and (30) is nonlinear and is implicitly expressed in H_{nt}, the nonsymmetric convective thermal conductivity matrix. The large time constant of the energy equation, as compared to that of the flow equation, makes the above presentation of the numerical equations quite attractive for an interlacing scheme of solutions such as used by Sorey [1975]. This interlacing scheme uses the fluid velocity obtained from a direct solution of (29) and (30) and feeds back the temperature resulting from solution of (31) to the first energy equation pair to repeat the cycle. Quasi-linearization of temperature dependent material properties is embedded in this procedure. This approach of solving the coupled equations is enhanced by the low sensitivity of the dependent variables P and U within some ranges of temperature in different problems. Therefore energy equations in these ranges can march through time using large time steps compared to the small time steps required in the simultaneous solving of the other two equations. This scheme has still further advantages in situations where the mass transfer contribution to temperature distribution is negligible. In these cases a single solution of the energy equation provides the needed temperature information for the stepwise solution of the other two equations.

However, the present formulation of the coupled equations (29), (30), and (31) needs to be altered if a one-step direct solution (fully implicit) is desired, as opposed to the interlaced solution. To obtain a useful form, a Crank-Nicolson procedure is used, where the solution of each step is sought in the middle of the interval. The solution technique for both symmetric and nonsymmetric matrices, finalized in the above procedures, is the LU decomposition Gaussian method.

Verification and Application

Because other methods were not available, full-capability verification of ROCMAS was not possible for some time. Earlier publications [Witherspoon et al., 1981] provide an account of partial testings of the code. A recent publication by Aboustit et al. [1982], however, provided an opportunity for code-to-code verification that is presented below. An attempt is made here in a scoping study to simulate the effect of the introduction of a thermal source in a fluid-saturated, fractured rock environment.

- **TABLE 1. Data Used in Sand Column Consolidation Analysis**

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity, ϕ</td>
<td>2.0 x 10^-4</td>
</tr>
<tr>
<td>Young's modulus, E_s</td>
<td>6 x 10^7 Pa</td>
</tr>
<tr>
<td>Poisson's ratio, ν_s</td>
<td>4.0 x 10^-1</td>
</tr>
<tr>
<td>Thermal expansion coefficient, β_T</td>
<td>3.0 x 10^-2</td>
</tr>
<tr>
<td>Matrix heat capacity, ρC</td>
<td>1672 kg m^-3 °C</td>
</tr>
<tr>
<td>Solid-fluid-thermal conductivity, K_M</td>
<td>8.36 x 10^-1 W m^-1 K^-1</td>
</tr>
<tr>
<td>Permeability, k_f</td>
<td>4.0 x 10^-1 m/s</td>
</tr>
<tr>
<td>Biot's coupling coefficient, α</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Material is rock.

*See notation section for relationship with Lame's constants.

Fluid properties are assumed to be constant in this problem.
Verification: Thermoelastic Consolidation of a Sand Column

Abousit et al. [1982] used a nonconvective coupled variational finite element approach to analyze the thermoelastic consolidation of a sand column. Table 1 gives the data used in this problem. Results of their analysis have been reproduced in Figure 1 along with our solution of the same problem. There is almost perfect agreement between the two solutions. The slight discrepancy is due to the interlaced solution scheme of the present work, in which temperature solution lags one step behind the hydromechanical calculations. Reduction of the time step size will decrease the difference. In solving this problem, the advection of energy along with the effects of fluid compressibility, thermal expansivity, and viscosity variations were assumed to be negligible. All of these assumptions, in addition to linear material behavior, can be relaxed at will in the program ROCMAS.

TABLE 2. Data Used for Analysis of Fracture Inflow to a Heater Borehole

<table>
<thead>
<tr>
<th>Material</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>mass density, ρ_s</td>
<td>2.6×10^3 kg/m3</td>
</tr>
<tr>
<td></td>
<td>porosity, ϕ</td>
<td>5.0×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>Young's modulus, E_s</td>
<td>51.3 GPa</td>
</tr>
<tr>
<td></td>
<td>Poisson's ratio, ν</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>thermal expansion coeff, β</td>
<td>8.8×10^{-5} C$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>specific heat, C_m</td>
<td>2.1×10^{-1} kJ/kg °C</td>
</tr>
<tr>
<td></td>
<td>thermal conductivity, K_m</td>
<td>3.18×10^{-3} kJ/m s °C</td>
</tr>
<tr>
<td></td>
<td>permeability, k_f</td>
<td>1.0×10^{-18} m2</td>
</tr>
<tr>
<td></td>
<td>Biot's storativity constant, $1/M$</td>
<td>5.0 GPa</td>
</tr>
<tr>
<td></td>
<td>Biot's coupling constant, a</td>
<td>1.0</td>
</tr>
<tr>
<td>Fracture</td>
<td>initial aperture, $2b$</td>
<td>10^{-1} m</td>
</tr>
<tr>
<td></td>
<td>Biot's storativity constant, $1/M$</td>
<td>5.0 GPa</td>
</tr>
<tr>
<td></td>
<td>initial normal stiffness, K_n</td>
<td>85 GPa/m</td>
</tr>
<tr>
<td></td>
<td>initial tangential stiffness, K_t</td>
<td>0.85 MPa/m</td>
</tr>
<tr>
<td></td>
<td>friction angle, ϕ</td>
<td>30°</td>
</tr>
<tr>
<td></td>
<td>cohesion, C</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>porosity, ϕ</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The developments presented in this paper do not contain the expansions needed for the inclusion of the nonlinear fracture element, for the sake of brevity. However, as it was explained in the text, this task has been performed along the lines of Noorishad et al. [1982a], and the ROCMAS code can handle porous fractured rocks.

Application: A Scoping Analysis of the Occurrence of Coupled Thermal-Hydraulic-Mechanical Phenomena Near a Heater

To demonstrate the ability of ROCMAS to simulate the thermohydromechanical environment around a waste canister or heater, the changes of fluid inflow to a heater borehole induced by the temperature rise are studied. A 5-kW heater is located at a depth of 350 m in granite. A horizontal fracture is assumed to lie 3 m below the heater midplane and extend from the heater borehole to a hydrostatic boundary at a radial distance of 20 m from the borehole. The properties of rock...
and fracture are given in Table 2, and the two-dimensional axisymmetric (r, z) finite element grid is shown in Figure 2. The heater drift, approximated by the cylindrical hatched area, is simulated by assigning a very low value of Young's modulus to the elements. Before the heater raises the temperature of a large volume of the rock, the flow from the hydrostatic outer boundary to the atmospheric ("zero" hydraulic pressure) borehole is high. Later in time, with the heated rock above the fracture expanding and the fracture aperture near the heater borehole closing, the flow decreases sharply, as shown in Figure 3. The evolution of the fracture aperture profile, together with the variations of the pressure and temperature distributions, are shown in Figure 4. As may be seen, in the pressure-distance graph of this figure, at 0 day, before the tapping of the fracture, full hydrostatic pressure prevails in the fracture. This pressure diminishes rapidly at 0.25 day before major development of the thermal front. However, as thermal stresses are established, the fracture starts closing. As a result, the pressure inside the fracture starts rising, thus leading to the establishment of full pressure in the fracture at 14 day, similar to the 0 day case. These results may provide a better understanding of some of the observations made in the in situ heater experiments in the Stripa granite. The delayed responses of the extensometers in these experiments [Witherspoon et al., 1981] may be explained by the closing of the fracture. Similarly, reduction leading to stoppage of the water inflows into the heater boreholes [Nelson et al., 1981] can also be explained by the same phenomena.

CONCLUSIONS

The work presented here provides a new technique for investigation of thermal-hydraulic-mechanical behavior of fractured porous rocks. The work is based on the fundamentals of consolidation and thermoelasticity, which are recast into what we call thermohydroelasticity theory.

A direct solution process has been employed that involves a variational formulation and a Galerkin integral to produce a set of three matrix equations. In this presentation the equations of static equilibrium and fluid flow appear in an implicitly coupled form, and the energy equation is explicitly coupled to these equations. In this scheme, referred to as the interlacing scheme, a compatible solution is obtained. To prepare the formulation for a complete direct solution scheme, the Crank-Nicolson approximation is introduced in the energy equation, and as a result, the energy equation also becomes linearly coupled to the other two equations. An account of the partial verification of the developed code ROCMAS can be found in the work by Witherspoon et al. [1981b]. In this paper, the results of a code-to-code verification of the triple analysis capability of ROCMAS are presented for the first time. Also, in a scoping analysis, thermohydromechanical simulation of fracture inflow near a heater was performed. It was illustrated that the nonlinear fracture behavior activated by coupling effects can change fluid flow behavior in the rock dramatically.

APPENDIX: MATRIX COEFFICIENTS OF EQUATIONS (29), (30), AND (31)

Matrix coefficients of the solution formulation (equations (29), (30), and (31)) are defined in the following equations:

\[
K = \sum_{n=1}^{N} \int_{D} \Phi_n \sigma_n \Phi_n \, dv_n
\]

\[
C_{PU} = C_{UP} = \sum_{n=1}^{N} \int_{D} \Phi_n \frac{\partial \phi_n}{\partial \rho_0} \Phi_n \, dv_n
\]

\[
C_{UT} = \sum_{n=1}^{N} \int_{D} \Phi_n \beta \frac{1}{\rho_0} \Phi_n \, dv_n
\]

\[
C_{TU} = \frac{1}{T_D} C_{UT}
\]

\[
E_f = \sum_{n=1}^{N} \int_{D} \Phi_n \frac{1}{M^f} \Phi_n \, dv_n
\]

\[
H_f = \sum_{n=1}^{N} \int_{D} \Phi_n \frac{k_f}{\eta_1} \Phi_n \, dv_n
\]

\[
C_{RT} = \sum_{n=1}^{N} \int_{D} \Phi_n \frac{1}{M^T} \Phi_n \, dv_n
\]
The superscript T stands for matrix transposition operation; n_1, n_2, and n_3 designate parts of A_2, B_2, and C_2 boundary surfaces, respectively.

NOTATION

- A_1, A_2: structural boundaries where displacements and surface tractions are prescribed.
- B_1, B_2, C_1, C_2: fluid flow and heat flow boundary parts where Dirichlet or Neumann boundary conditions are prescribed.
- C: elasticity matrix.
- C_{et}: components of elasticity tensor for solid phase.
- C_{etT}: pressure-temperature coupling matrix.
- C_{et}: displacement-temperature coupling matrix.
- C_{ed}: specific heat capacity of liquid at constant volume.
- C_{ea}: specific heat capacity of solid at constant volume.
- D/D_t: comoving time derivative following solid motion.
- e: Young's modulus, $\mu(3\lambda + 2\mu)/(\lambda + \mu)$.
- E_F: fluid storativity matrix.
- E_h: heat capacity matrix.
- f: components of body force vector.
- F: force vector.
- g: gravitational acceleration.
- G: traction vector on A_2 boundary.
- H_f: fluid conductivity matrix.
- H_h: heat conductivity matrix.
- H_{mf}: mass transfer conductivity matrix.
- k_f: intrinsic permeability tensor.
- K: stiffness matrix.
- K_f: liquid thermal conductivity tensor.
- K_{mf}: solid-fluid mixture thermal conductivity tensor.
- K_{fs}: solid thermal conductivity tensor.
- M: Biot's constant, $1/\phi \beta_r$.
- M_T: constant, $1/\phi \beta_T$.
- N: total number of elements in finite element idealization.
- n: outward normal direction cosine vector.
- n: index used to designate element number.

P: pressure vector.
P: pressure vector.
P_e: element pressure vector at preceding time step.
q: fluid flow vector.
Q_f: heat flow vector.
Q: fluid flow vector.
Q_o: normal fluid outflow from B_2 boundary.
T: temperature.
T_o: absolute temperature in stress-strain free state.
T_T: matrix transpose sign.
T: temperature vector.
T_e: element temperature vector at preceding time step.
U, U_e: solid element displacement vector.
U_b, V_b: liquid displacement and velocity vectors.
V_e: solid velocity vector.
V: space occupied by fluid-solid mixture.
v^*: region of space occupied by fluid-solid mixture of an element n.

x_i or x, y, z: Cartesian coordinates, $i = 1, 2, 3$.
a: Biot hydroelastic coupling coefficient.
β: thermoelastic coupling coefficient, equal to $(2\mu + 3\lambda)\eta_T$.
β_P: fluid compressibility.
β_f: fluid thermal expansion coefficient.
γ: solid thermal expansion coefficient.
δ_{it}: Kronecker delta function.
Δ: first order difference operator.
η: liquid dynamic viscosity.
λ: Lamé's elasticity constant.
μ: Lamé's elasticity constant.
ν: functional perturbation parameter.
ν_s: Poisson's ratio, $\lambda/(2(\lambda + \mu))$.
ξ: fluid volume strain.
ρ: liquid mass density and average liquid mass density.
ρ_s: solid mass density and average solid mass density of porous space.
ρ_m: solid-fluid mixture mass density.
(ρCM): solid-fluid mixture heat capacity.
t, t_{ij}: stress tensor and components (compression negative).
T_T, T_{ij}: thermal stress tensor and components.
ϕ: porosity.
Φ_i: displacement interpolation function matrix.
Φ_{ij}: strain-nodal displacement transformation matrix.
Φ: pressure and temperature interpolation function matrix.
Φ_a: transformation matrix for pressure or temperature gradients.
ψ: fracture friction angle.
* signifies assigned boundary conditions or average values of some thermodynamic quantity.
0 signifies initial conditions.
* time convolution sign.

Acknowledgments. This paper was prepared under the auspices of the Director, Office of Energy Research, Office of Basic Energy Sciences, Division of Engineering, and Geosciences of the U.S. Department of Energy under contract DE-AC03-76SF00098 and the Waste Management Branch, Division of Radiation Programs and Earth Sciences, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington D.C., 20555 through NRC Fin B 3046-3 under Interagency Agreements DOE-60-83-388 and 60-83-367.

REFERENCES

This text was edited for clarity and conciseness in the context of this dataset.